
9
On tables and graphs

In the Chapters 10 to 19, we study several families of special functions and
their various series and continued fraction representations. Only a small
number of these representations is also found in [AS64]. The latter are
marked with the symbol AS in the margin.
The collected formulas are further illustrated numerically and graphically.
We now explain how to interpret and use the tables and graphs. In the
sequel we consistently use z for a complex argument and x for a real argu-
ment.

9.1 Introduction

While we mention the domain of convergence with every continued fraction
in the next chapters, the precise convergence behaviour is not described.
Since, in practice, it is the initial convergence behaviour that matters and
not the asymptotic one, we illustrate the convergence rate empirically.
This is done,

either numerically, in tables, where we evaluate different continued
fraction representations for a large range of arguments,
or graphically, by presenting level curves of significant digits, or graph-
ing the evolution of the approximants’ accuracy.

The former is detailed in Section 9.2 and the latter in Section 9.3. All
tables and graphs are labelled and preceded by an extensive caption.

9.2 Comparative tables

In the next chapters all formulas which are evaluated in one of the tables,
are marked with the symbol

– – –

– – –

– – – in the right margin. For formulas that are
not marked in that way no numerical illustration of their behaviour is given.
All tables are composed in the same way. The two leftmost columns contain
the function argument and the function value. The function value is the
correctly rounded mathematical value, verified in a variety of programming
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164 9. ON TABLES AND GRAPHS

environments. In case the function value f(z) is a complex value, only its
signed modulus

|f(z)|s = sgn (<f(z)) |f(z)| (9.2.1)

is returned. The sign of <(f(z)) indicates whether the complex value f(z)
lies in the right or the left half-plane. The other columns contain the
relative truncation error ∣∣∣∣f(z)− fn(z)

f(z)

∣∣∣∣ (9.2.2)

incurred when using a certain partial sum or continued fraction approxi-
mant fn(z) instead of the function f(z) under investigation. The continued
fraction approximant fn(z) can be either a classical approximant fn(z; 0)
or a modified approximant fn(z;wn).
The evaluation of the special function for the selected arguments is exactly
rounded to 7 decimal digits and the truncation errors are upward rounded
to 2 decimal digits. Since the modulus of the truncation error (9.2.2) is
always positive, the sign is omitted here.
The approximant number n doesn’t appear in the table but is mentioned
in the caption. By tabulating the truncation error for different n, also the
speed of convergence is illustrated.
The function arguments are selected in the intersection of the domains
associated with each of the formulas evaluated in the table (with a slight
exception for some series representations). The resulting set of arguments
is traversed in the following way, if applicable: from the positive real axis
over the first quadrant to the positive imaginary axis, then through the
second quadrant of the complex plane to the negative real axis and so on.
As a rule templates of all possible function arguments are tabulated, for
increasing modulus, except when function evaluations for different argu-
ments are related by symmetry relations. The numerical illustration of the
elementary functions forms an exception: since these are thoroughly illus-
trated graphically, evaluations in the tables are restricted to real arguments
only.
When evaluating the approximants of a limit periodic continued fraction
K∞

m=1 (am/1) of which the partial numerators do not tend to zero, use of
one or more modifications may be appropriate. In that case the evalua-
tions without modification and with use of the different modifications are
tabulated. We clearly indicate in the caption of the table which column in
the table illustrates which modification.
When the upward rounded relative truncation error satisfies

C = 4
(∣∣∣∣f(z)− fn(z)

f(z)

∣∣∣∣) ≤ 5× 10−s, s ∈ N, (9.2.3)
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then the approximation fn(z) guarantees s significant decimal digits com-
pared to the exact value f(z). When C ' 10k with k ≥ 0, care must
be taken in interpreting the quality of the approximation fn(z). For
k > 1 we find |fn(z)| ' 10k|f(z)|, while for k = 0 we can very well
have |fn(z)| � |f(z)|. In both cases fn(z) can be way off, even missing to
predict the magnitude of f(z). In general

|f(z)− fn(z)| ≤ C|f(z)| =⇒ |fn(z)| ∈ |f(z)| [1− C, 1 + C].

All printed values in the tables are verified and therefore reliable. Where
IEEE 754 arithmetic was insufficient because of overflow or underflow,
multiprecision interval arithmetic or high precision computer algebra im-
plementations were used.

Example 9.2.1: Consider

2F1 (1/2, 1; 3/2; z) =
1

2
√
z

Ln
(

1 +
√
z

1−√z
)
,

which has the regular C-fraction representation (15.3.7) given by

z 2F1 (1/2, 1; 3/2; z) =
∞

K
m=1

(cmz
1

)
, z ∈ C \ [1,+∞),

c1 = 1, cm =
−(m− 1)2

4(m− 1)2 − 1
, m ≥ 2.

The function also has the M-fraction representation (15.3.12) given by

1/2
1/2 + z/2 −

z

3/2 + 3z/2 −
4z

5/2 + 5z/2 − . . .
, |z| < 1

and the so-called Nörlund fraction representation (15.3.17) given by

1
1− z +

z(1− z)
3/2 − 5/2z +

∞

K
m=2

(
m(m− 1/2)z(1− z)

(m+ 1/2)− (2m+ 1/2)z

)
, <z < 1/2.

The intersection of the domain of f(z) = 2F1(1/2, 1; 3/2; z) with the conver-
gence domains of the three continued fractions is the set

({z : |z| < 1} ∩ {z : <z < 1/2}) \ {z : Arg z = π}.
So we can choose arguments:

on the positive real axis in the interval [0, 1/2),
in all four quadrants as long as we remain inside the unit circle and
have the real part less than 1/2,
and on the imaginary axis in the interval (−i, i).
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Table 9.2.1: Because of the symmetry property f(x + ix) = f(x − ix),
we can restrict ourselves to the upper half-plane, which we traverse in
counterclockwise direction as explained. We evaluate the 20th classical
approximant f20(z; 0) of each fraction and compare it to the function eval-
uation at the argument. Remember that for complex arguments only the
signed modulus |f(z)|s, as defined in (9.2.1), is displayed instead of the
complex function value f(z).

x 2F1(1/2, 1; 3/2;x) (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 1.035488e+00 2.5e−23 4.0e−32 1.5e−20 1.5e−20

0.2 1.076022e+00 5.6e−17 1.3e−25 1.5e−14 1.7e−13

0.3 1.123054e+00 3.0e−13 1.4e−21 4.8e−11 7.6e−09

0.4 1.178736e+00 1.4e−10 1.8e−18 1.4e−08 5.0e−05

x |2F1(1/2, 1; 3/2;x+ ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 1.033684e+00 3.6e−20 3.9e−29 1.5e−17 1.4e−17

0.2 1.066938e+00 8.0e−14 1.1e−22 1.6e−11 9.3e−11

0.3 1.097258e+00 4.2e−10 8.4e−19 5.0e−08 1.5e−06

0.4 1.121184e+00 1.8e−07 5.5e−16 1.6e−05 1.4e−03

x |2F1(1/2, 1; 3/2; ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
0.1 9.985628e−01 2.3e−23 1.4e−32 1.6e−20 1.8e−21

0.3 9.875589e−01 2.4e−13 3.6e−23 5.5e−11 2.9e−12

0.5 9.678199e−01 1.0e−08 5.8e−19 1.5e−06 2.1e−08

0.7 9.425900e−01 1.1e−05 2.4e−16 1.3e−03 3.1e−06

0.9 9.147830e−01 2.1e−03 1.6e−14 1.9e−01 6.8e−05

x |2F1(1/2, 1; 3/2;x− ix)|s (15.1.4) (15.3.7) (15.3.12) (15.3.17)
−0.1 9.673650e−01 3.2e−20 5.4e−30 1.6e−17 2.8e−19

−0.3 9.077224e−01 2.9e−10 2.8e−21 6.1e−08 2.4e−11

−0.5 8.563213e−01 1.2e−05 1.3e−17 1.8e−03 2.3e−08

−0.7 8.123036e−01 1.3e−02 2.1e−15 3.9e+00 9.9e−07

We see that, for the real argument x = 0.3, the 20th approximant f20(x; 0)
of the C-fraction (15.3.7) ensures 21 significant decimal digits because

∣∣∣∣ 2F1(1/2, 1; 3/2;x)− f20(x; 0)
2F1(1/2, 1; 3/2;x)

∣∣∣∣ ≤ 1.4× 10−21, x = 0.3 .
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Clearly, here the C-fraction delivers the better approximant. The evalua-
tion of (15.3.7) can further be improved with the use of the modifications
(15.3.5), w(z) = 1/2

(√
1− z − 1

)
, and (15.3.6),

w(1)
n (z) = w(z) +

cn+1z + z/4
1 + 2w(z)

.

Table 9.2.2: The approximant f20(x) of (15.3.7) is first evaluated without
modification and subsequently with the mentioned modifications. Note
that the first truncation error column equals the first truncation error
column of Table 9.2.1 for real arguments x, since both concern the classical
approximant f20(x; 0) of the C-fraction.

x 2F1(1/2, 1; 3/2;x) (15.3.7) (15.3.7) (15.3.7)
0.1 1.035488e+00 4.0e−32 2.6e−35 6.5e−38

0.2 1.076022e+00 1.3e−25 8.8e−29 4.8e−31

0.3 1.123054e+00 1.4e−21 1.1e−24 9.6e−27

0.4 1.178736e+00 1.8e−18 1.4e−21 1.9e−23

With use of the modifications, the truncation error in x = 0.3 decreases to∣∣∣∣ 2F1(1/2, 1; 3/2;x)− f20(x;w(x))
2F1(1/2, 1; 3/2;x)

∣∣∣∣ ≤ 1.1× 10−24, x = 0.3,∣∣∣∣∣ 2F1(1/2, 1; 3/2;x)− f20(x;w
(1)
20 (x))

2F1(1/2, 1; 3/2;x)

∣∣∣∣∣ ≤ 9.6× 10−27, x = 0.3,

respectively ensuring 21, 24 and 26 significant decimal digits.

Example 9.2.2: The ratio of parabolic cylinder functions U(1, x)/U(0, x)
has the C-fraction representation (16.5.7),

U(1, x)
U(0, x)

=
1
x +

∞

K
m=2

(
m− 1

2

x

)
, x > 0.

Since the partial numerators tend to infinity, use of the modification

w̃n(x) =
−x+

√
4(n+ 1/2) + x2

2

is recommended when evaluating the approximants.
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Table 9.2.3: We tabulate the relative error of the 5th approximants f5(x)
which are first evaluated without modification and then with the modifi-
cation w5(x).

x U(a, x)/U(a− 1, x) (16.5.7) (16.5.7)
0.25 8.329323e−01 1.4e+00 2.0e−02

0.75 6.485192e−01 1.8e−01 4.4e−03

1.25 5.211635e−01 4.0e−02 1.0e−03

5.25 1.813514e−01 7.3e−06 1.2e−07

20.25 4.920381e−02 2.6e−11 5.9e−14

50.25 1.988869e−02 3.1e−15 1.2e−18

100.25 9.973574e−03 3.2e−18 3.1e−22

The tables in the handbook are not discussed, only presented, because the
conclusions are obvious most of the times. The speed of convergence can be
observed. The variation in the magnitude of the truncation error through-
out the complex plane is clear. Specific observations, such as extremely
slow convergence, are confirmed in the existing literature.
Other counter-intuitive behaviour can be understood by taking a closer
look at the formulas involved. For instance, while T-fractions correspond
to series developments both for small and large z (around 0 and ∞), this
behaviour is not confirmed (at first sight) in the evaluation of (17.1.48).
Take a look at the approximation of Jν(x) in the Tables 17.1.1 and 17.1.2.
For real-valued arguments the Bessel function is real-valued. But here the
T-fraction (exceptionally) introduces an imaginary part in the approxima-
tion of Jν+1(x)/Jν(x). Of course, this disturbs the quality of the approx-
imation on the real axis. Because of (17.2.2) a similar observation can be
made for the Bessel function Iν(ix) evaluated on the imaginary axis. In
other parts of the complex plane the behaviour is as expected.

9.3 Reliable graphs

For graphical illustrations of the specific behaviour of special functions in
subsets of their domain, we refer to [AS64] and [SO87]. Also several web-
sites are devoted to the visualisation of special functions, both for real and
complex variables. Our interest is in the approximation power of series
representations and continued fraction representations and hence in the
visualisation of the truncation error incurred when using these approxima-
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tions. We therefore show level curves of s such that∣∣∣∣f(z)− fn(z)
f(z)

∣∣∣∣ ≤ 5× 10−s, z ∈ C, s ∈ N (9.3.1)

or ∣∣∣∣f(x)− fn(x)
f(x)

∣∣∣∣ = 5× 10−s, x ∈ R, s ∈ R+
0 (9.3.2)

where fn(z) is the nth approximant of a series or continued fraction rep-
resentation for the function f(z). Continued fraction representations de-
picted in graphs are marked throughout the chapters with in the right
margin.
In all our plots the grid lines are drawn one unit apart, both in the hor-
izontal and the vertical direction (aspect ratio 1 for each unit square). If
the x- or y-axis belong to the plot, they are shown as a solid line. For
instance, in the area [1, 19] × [0, 9] only the x-axis is shown, while in the
area [−2, 2]×[−2, 2] both axes appear. Since the axes do not always appear
in the picture, we have preferred not to label them. The caption provides
sufficient information on the plotted area.
So all our graphs show implicit relations Rs,t(x, y) = 0 involving at most
two real unknowns x and y and some real parameters s and/or t. Given
that this kind of graphing problem has been discussed for centuries, it is
unsurprising that there is an abundance of (partial) solutions to it. It
is, however, surprising that until recently [Tup91] there was no computer
method capable of reliably solving this problem.
The algorithm implemented in GrafEq (pronounced “graphic”) correctly
graphs mathematical formulas involving the basic operations, inequalities
and known elementary functions [Tup04]. When applied to a difficult for-
mula that is beyond its capabilities, the algorithm clearly marks the pixels
that it cannot decide to belong to the graph, as uncertain. At no point
does the algorithm use any approximations that may cause it to produce
an incorrect graph. We summarise the internal workings of GrafEq below.
In order for GrafEq to be useful in the context of the continued fraction
handbook, two extensions were developed [BCJ+05]:

since expressions in a complex variable z may get quite complicated
when manually converted to a relation in x = <z and y = =z, it is
necessary to add the direct handling of complex variables to GrafEq’s
interface;
since GrafEq only has implementations of the elementary functions
and none of the special functions, we need to be able to dynamically
extend the list of functions known by GrafEq by providing their im-
plementation.
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Internal working of GrafEq. Any formula R(x, y), when evaluated with
specific real numbers x and y, is always either false (F) or true (T). Given
a mathematical formula R(x, y) and a rectangular region [L,R]× [B, T ] of
the Cartesian plane R2, GrafEq produces an illustration that consists of a
W ×H rectangular array of pixels. Each pixel herein represents a closed
rectangular region of the plane. Since no algorithm can produce correct
black and white graphs, black meaning that there is at least one solution
of R(x, y) within the pixel and white meaning that there are no solutions
within the pixel, we allow to color some pixels “uncertain”, meaning that
there may or may not be solutions of R(x, y) within the pixel.
Even if the bounds L,R,B and T of the graphing area are given as ma-
chine numbers, the bounds of individual pixels may not be representable
exactly. Therefore GrafEq uses inner and outer bounds of the rectangular
region corresponding to the pixel. The inner bounds are used to show the
guaranteed existence of solutions and the outer bounds to show the ab-
sence of solutions. Further GrafEq makes use of interval arithmetic with
boolean values to represent and process the result of formula evaluations.
Three boolean intervals are possible, 〈F, F〉, 〈F, T〉, 〈T, T〉 with F < T.
The boolean intervals provide:

domain tracking, by keeping track of whether or not a quantity such
as
√
x with x < 0, is well-defined,

continuity tracking, by providing information on whether a quantity
is continuous or not within the given bounds,
branch tracking, by tracing to which branch each piece belongs when
breaking a discontinuous evaluation apart into pieces.

Plotting special functions. Additional function implementations must
also return interval evaluations and support the domain and continuity
boolean intervals required by GrafEq’s internal engine. To guarantee the
reliability of the function evaluations, the results in [CVW06] on the im-
plementation of special functions are used.

Example 9.3.1: We show a simple illustration of (9.3.1) for a T-fraction
approximant of the exponential function, namely

f(z) = exp(z)− 1,

fn(z) =
z

1− z +

n

K
m=2

(
(m− 1)z
m− z

)
, n = 8,

|f(z)− fn(z)|
|f(z)| ≤ 5× 10−s, s = 6, 7, 8.
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T-fractions have the property that, besides being useful for relatively small
z, they approximate well for small 1/z at the same time.

Figure 9.3.1: We consider the region −30 ≤ <z ≤ 5, |=z| ≤ 35 (excep-
tionally, in this figure the grid-lines are 10 units apart) and zoom in on
the regions |<z| ≤ 2, |=z| ≤ 2 and −20 ≤ <z ≤ −10, 10 ≤ =z ≤ 20 (in
these figures the grid-lines are 1 unit apart, as usual). The regions corre-
sponding to s = 6, 7, 8 are respectively coloured light-grey, medium-grey
and dark-grey, respectively. Axes and grid-lines are coloured black.

Note the very small isolated regions in the left half-plane of the larger draw-
ing, which are impossible to locate without a reliable graphing method.
The resolution of the small insets is 192 × 192 pixels while that of the
larger figure is 192 × 384 pixels. With the same number of 73728 plot-
points for the latter, the computer algebra system Maple (version 10) is
unable to produce the correct graph for s = 8.
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Example 9.3.2: The following is an illustration of (9.3.2) taken from
Chapter 14. In contrast to the above example where s ∈ N, here s can take
on all positive real values. Let the exponential integrals En(z) be defined
in <z > 0 by

En(z) :=
∫ ∞

1

e−zt

tn
dt, n ∈ N.

Analytic continuation of En(z) to the cut plane | arg z| < π extends the
definition and yields a single-valued function. Except on the negative real
axis, they can be represented by the series representation (14.1.11), the
asymptotic series expansion (14.1.13), the S-fraction (14.1.16),

ezEn(z) =
1
z +

n

1 +
1
z +

n+ 1
1 +

2
z +

n+ 2
1 + . . .

, n ∈ N,

=
1/z
1 +

∞

K
m=2

(
am/z

1

)
, a2k = n+ k − 1, a2k+1 = k,

| arg z| < π

and the real J-fraction representation (14.1.23),

ezEn(z) =
1

n+ z +

∞

K
m=2

(
(2−m)(n+m− 2)
n+ 2m− 2 + z

)
, | arg z| < π.

Figure 9.3.2: On the vertical axis we display the value s in (9.3.2) in
the range 0 ≤ s ≤ 12, where fn(z) respectively equals the 5th partial sum
of the series development (14.1.11) (lightest), the 5th partial sum of the
asymptotic series (14.1.13) (second lightest), the 5th approximant of the
S-fraction (second darkest) and the 5th approximant of the real J-fraction
(darkest) of f(z) = E3(z), all for real z = x with 1 ≤ x ≤ 25.
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It is easy to see how the continued fraction representations outperform the
series developments. From Table 14.1.1 one also sees that in the interval
[1, 25] the 5th modified approximant of the S-fraction guarantees on average
one more significant decimal digit than the classical 5th approximant.

Besides the graphs shown in Example 9.3.1, for which we needed reliable
graphing software, it is also interesting to take a look at the next figure,
in which we show the number of significant digits delivered by successive
approximants fn(x) of the Thiele interpolating continued fraction (11.3.9)

tan(z) =
z

1 +
−4π−2z2

1 +

∞

K
m=1

(
m4 − 4π−2m2z2

2m+ 1

)
,

z ∈ C \ {π/2 + kπ : k ∈ Z}

for real arguments x, where from light to dark n = 5, 6 and 7. At the
interpolation points ±mπ/2, m ∈ N0, the accuracy and hence the number
of significant digits is infinite, but in the neighbourhood of the interpola-
tion points the peaks in the graph are so steep that the traditional device
independent graphing tools miss each of them. Fortunately GrafEq does
not!


